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Diffraction of a weak shock with vortex generation 
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SUMMARY 
The region of finite vorticity near the edge of a diffractiny 

wedge is investigated. Dimensional analysis gives the dependence 
of the circulation and the velocity of the vortex region on the pulse 
strength. A close estimate of the magnitude of these quantities is 
obtained by replacing the vortex region by a single concentrated 
vortex. The theoretical conditions at the sharp edge are dis- 
cussed and compared with observations of real fluid behaviour. 
A short account of the theory of the core of the spiral vortex 
sheet in a perfect fluid is appended. 

The research reported herein was supported by the United 
States Air Force, through the Office of Scientific Research of the 
Air Research and Development Command. 

1. FORMULATION OF THE PROBLEM 

Observation of the diffraction of shock waves by sharp wedges shows 
the existence of a region of finite vorticity near the edge. The pheno- 
menon is shown in plate l, which reproduces one of several shadowgrams 
taken at the University of Michigan (Uhlenbeck 1950). The purpose of 
the present paper is to estimate the position, the velocity and the total 
circulation of the vortex region, in the limiting case of weak shocks. 

On using the acoustic approximation for weak pulses, the classical 
diffraction problem of Sommerfeld is obtained if the generation of vorticity 
is ignored. The solution of this problem for non-zero wedge angles was 
given by Friedlander (1946) and, in a modern and strongly simplified form, 
by Keller & Blenk (1951) and Miles (1952). This solution exhibits (in 
general) an infinite velocity near the sharp edge ; this fact indicates why the 
vortex-free solution is not found in reality. 

Experience shows that instead of flow past the sharp edges with infinite 
velocity, a discontinuity sheet forms, originating at the edge, and the velocity 
at the corner remains finite. Viscosity must be essential for this deviation 
from the vortex-conservation laws of inviscid flow ; however, the problem 
seems amenable to the now-classical aerodynamic technique in which the 
detailed mechanism of vortex production is by-passed and the flow with 
vortex sheet treated by inviscid fluid theory. T o  do this, the Kutta- 
Joukowski condition is formulated : vorticity is produced at any instant at 
such a rate that the resultant f l ~ w ,  with the velocities induced by the vortex 
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elements taken into full account, possesses a finite velocity at the corner. 
With this condition a problem is obtained which, at least for incompressible 
flow, is soluble in principle, although the actual calculations may lead to 
formidable difficulties. (Arguments about the existence of such solutions 
will be given later.) Qualitatively, however, by considering the motion of 
newly produced vorticity under the influence of the vorticity generated 
previously, it is easily understood that the discontinuity sheet will be wound 
into a narrow spiral, outside of which the flow may be taken as irrotational. 
Compressibility effects will complicate the phenomenon further, especially 
towards the core of the vortex ; this point will be discussed later. 

On the basis of the foregoing arguments, it is proposed to treat the problem 
by neglecting viscosity (and heat conduction). This assumption has strong 
support from experimental evidence. In inviscid flow, the diffraction 
pattern of a sharp pulse (of any strength) at an infinite wedge is exactly 
similar to itself for all times t .  With a coordinate system x ,  y centred at 
the vertex, the velocity, the pressure, and other functions of state become 
Functions of x/t and y / t  only. This ‘ quasi-steady ’ or ‘ conical ’ property 
of the flow field is strikingly well realized, as flow pictures taken at con- 
secutive times show, for diffraction patterns with vortices present. Scrutiny 
of the experimental data reveals only a small deviation from quasi-steady 
flow, which is accounted for by viscous effects, and for the purpose - of the 
present theory the inviscid assumption appears well justified. 

Next, in view of the restriction to weak pulses, it is proposed to treat the 
diffraction problem with vortex separation in the linearized approximation, 
i.e. a potential 4 will be assumed, satisfying the wave equation 

(1) 
. a 2 4  ap 1 a 2 4  

ax% a p  a2 a t 2  
- + - = - -  

(a =velocity of sound, a constant). For quasi-steady solutions, any 
derivative of the potential 4 will be a function of t=x /a t  and v=y /a t  
only ; therefore, q3 has the form 

Introduction of these variables into (1) leads to the equation 
4 = a t f (& ?I). (2) 

(3) fte( 1 - t2) +f?# - ?I2) - 2t?Ifh = 0. 
Observations show (see plate l), and the subsequent calculations 

verify, that, for weak shocks, the vortex region is limited to a domain whose 
radius is small compared with the radius at of the diffraction region. Here, 
161 << 1 and I q I < 1, so that (3) may be well approximated by Laplace’s 
equation, 

Thus the acoustic approximation leads to incompressible flow in the 
central region of a quasi-steady flow field. 

The incompressible treatment of the central region appears well justified 
for the problem with vortex generation, as the resultant velocities remain 
finite due to the superimposed effect of the vortex sheet. Experience 

fEa+fq?I=O.  (4) 
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shows, however, that appreciable density changes occur towards the core 
of the vortex spiral. These density changes were investigated experi- 
mentally and theoretically by Howard & Matthews (1955). From their 
results it may be seen that, in the limit of weak shocks, the density variation 
vanishes sufficiently rapidly to justify an incompressible treatment. 
Furthermore, for moderate shock strengths, density changes near the vortex 
do not necessarily invalidate the subsequent estimates based on incom- 
pressible flow. In order to be able to calculate the vortex motion under 
the influence of self-induced velocities in the presence of the wedge by 
means of the approximation of incompressibility, we need assume only that 
the Mach number of the flow velocities along the wedge surface remain 
small compared with unity. 

2. SOLUTION BY DIMENSIONAL ANALYSIS 

The linearized potential q3 for the diffraction problem with vortex 
separation, as a solution of the wave equation (l) ,  can be considered as a 
sum of two solutions : 

4 = 4, + q3P, (5) 
where q3s is the vortex-free (Sommerfeld) solution, and (6,. is an additional 
part due to the existence of the vortex sheet. The  potential +s is known; 
it depends on the strength of the pulse, the incidence of the oncoming wave, 
and the wedge angle. The  dependence on the strength of the pulse can be 
given immediately. Let uo be the gas velocity in the rear of the undisturbed 
incident pulse. (This ‘ afterflow velocity’ is taken positive in the direction 
of the incident wave propagation.) All velocity components derived from 
the solution will be proportional to uo, so that one can write, with a simple 
renormalization of (2), 

4, = auo tf&, 4, ( 2 4  

where f, is dimensionless and depends on the flow geometry, i.e. on the 
wedge angle and the angle of incidence only. 

The  additional solution & naturally also depends on uo and the flow 
geometry; however, its dependence on uo will not be as simple as that 
expressed by (2a). It is clear that the position of the vortex relative to the 
‘Mach circle’ (with radius at) will depend on the pulse intensity uo, and 
thus the velocities derived from +r will not be simply proportional to uo. 
Using the fact that for uo <a the vortex region is very near to the vertex of 
the wedge, the dependence of +r on uo will be found by dimensional analysis. 

For 
ltl< 1, /q)< 1, fs must become a solution of Laplace’s equation (4). 
Therefore, 

T h e  functionf, in (2a )  is a solution of equation (3), and is known. 

fs = { &(‘$ + iv)} =& { F,(5)) , (6) 

for I ll< 1. It is easy to write down the form of the function F,( Z;), as it 
must represent the complex potential for incompressible flow past an infinite 

F.M. H 
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wedge. 
and ray with the argument -p. 

Let the wedge with the angle /3 be formed by the positive real axis 
The function F, takes the form 

so that, for 0 < P<T, n lies in the range 4 ,<n< 1. The dimensionless 
quantities A,, A,. . . become real for the wedge position specified above ; 
they depend on the flow geometry and can be given only if the Sommerfeld 
problem is solved, i.e. if fs is found as a solution of the full equation (3). 
Expansion of the Sommerfeld solution around C= 0 naturally confirms the 
form of (7), but only the first two terms represent analytic functions of the 
present variable 5 .  This means that if more terms were needed for the 
treatment of the vortex generation problem, the use of the approximate 
equation (4) would be unjustified. 

As 9 < n < l ,  only the first term in (7) represents a ' singular' flow past 
the wedge with infinite velocities, which is taken as the ' cause ' of vortex 
separation. It may be imagined that the whole phenomenon of vortex 
generation is not only 'caused', but also fully 'dominated' by the first 
term of (7), which would then be the only one that need be kept for the 
subsequent analysis. This assumption will be made now, and its justifi- 
cation will be sought a posteriori. 

Returning to dimensional variables, put 

+, = au, tF,, x = at<, 
so that 

(9) 

$, = au ,t{ Al( :)n + A,( 2)2n + . . .} 
0 1  - - al-% A zntl-n + a1-2nu0 A, x2nt1-2rr + . . . 

sz Kl Z"t1-n + K ,  x2nt1-zn + . . . (10) 

If only the first term plays a role, then there is only one physical constant in 
the problem : K,, which has the dimensions of a velocity to the power 2 - n. 

Now consider the vortex region, which is ' generated and dominated ' 
by the first term of the flow potential (lo), and let it be characterized by the 
total circulation F, the position of the core (centre of the spiral) x,, and the 
velocity w, of the point z ~ .  As the resultant flow is also quasi-steady, the 
time-dependence of these quantities is given as follows : 

zr t, w, a t o ,  r cc t. (11) 

The dimensional factors multiplying these time-dependencies can be formed 
only by the quantity K,, and in only one way: 

Z, oc KYcsn)t, W, a K:/(zn), r a K;I(sn)t, (12) 
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or, using the expression for K, in terms of a, u, and A,, 
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The use of the factor does not make much sense at present, as a 
further factor dependent on the flow geometry is implied in (13). But (13) 
gives the correct dependence on the ‘ afterflow Mach number ’ uo/a (=Mo), 
which characterizes the pulse strength. Indeed, if Q and u, are not inde- 
pendent constants of the problem but occur only in the combination K,, 
then (13) represents the only possible solution. 

The explicit dependence of & on M, is given as d p  cc r, so that 

for I((<l.  
The validity of the original assumption that the first term of the 

expansion (10) is predominant, can now be shown in an ‘iterative’ way. 
Introduce zr from (13) into (10) and compare the magnitudes of the different 
terms. The Nth term becomes 

cc au, tA, A?/(z-n)MN* 0 (2-n). (14) 
It  is seen that the magnitude of the terms diminishes rapidly with increasing 
_V if Mo is small. Thus, in the limiting case of weak pulses, the 
vortex region will really be ‘generated and dominated’ by the first term. 
Howard & Matthews (1955) found that the corresponding dependence 
.Jut cc 

It must be emphasized that the simple result obtained for diffraction is 
not always valid for vortex generation problems ; indeed, it is quite excep- 
tional. In wing theory there is considerable interest in problems of vortex 
separation from sharp edges. The method generally used is the replace- 
ment of the vortex region by a single concentrated vortex, as will be dis- 
cussed shortly. Only one case in wing theory corresponds to the diffraction 
problem : for a rectangular thin wing in supersonic flow, the vortex separation 
from the side edge is perfectly analogous to the diffraction by a wedge with 
p=O. This case was treated by Cheng (1955)’ using the single-vortex 
model, and his results agree with (13). Other wing problems can be related 
to the diffraction case only if the wedge is supposed to move, with some con- 
stant velocity v,. This causes additional complications, since the pheno- 
menon depends strongly on the direction of the motion of the wedge. 

was excellently verified by their own experiments. 

H2 
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The simplest cases are obtained for wedge motion in the direction of the 
bisectrix of the wedge angle, as otherwise the wedge motion causes vortex 
separation even without the diffracted pulse. As an example, the case of 
zero wedge angle (/3=0, n=$) will be considered. The potential of the 
constant flow relative to the edge is simply voz. If no < a, a development of 
q58 relative to the moving edge can be expected to have the same form,.( lo), as 
for vo=O, except that the A,, A,, . . become functions of z~,,/u0, and there 
will be an additional term of the form 

A+s = v0 x 
due to the proper motion of the plate. Now, the ‘iterative’ justification 
of the predominance of the first term in (10) fails, because of this additional 
term. From (13), with n=&, it follows that 

Equation (14) yields, for N =  1, 

which is larger than the previous term only if 

If vo is kept constant, this condition clearly fails in the limit u0 --f 0. 
Physically, this means that for a weak shock, and vogue, the vortex is swept 
away from the edge by the velocity q,. If, however, zio and uo have the same 
order of magnitude, and uo/ao is still small, (13) becomes valid again. 

It may be noted that, for a wedge flow with ‘generalized’ quasi- 
steadiness- such that 

+ S , l  = 

near z = 0, a result corresponding 
important physical constant : 

WI. cc 2, cc qi(2-n)tm 9 

to (12) may be obtained, if Kl is the only 

3. THE ‘ SINGLE VORTEX ’ APPROXIMATION 

In order to find the numerical factors still missing in (13), use will now 
be made of a n  approximation mentioned previously : the whole vorticity 
region will be replaced by a single concentrated vortex. The results 
already obtained by dimensional analysis will incidentally be re-established. 

The complex potential near the vertex will be decomposed again into a 
vortex-free part and an additional solution due to the vortex: 

According to the results of 52, put 
4 = 48 + +Fa 

ds = UU, tAIcn. 

( 5 0 )  

( 10a) 
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For the single-vortex model, +T is the potential for a vortex of strength r 
situated at the point zF= at<1., in the presence of the wedge, which must be 
a streamline of the flow (4{+} = constant). The solution is 

For this potential, the velocity vanishes as 15 I -+ co. It is easy to realize 
that this is the proper boundary condition at infinity. The quantities ds 
and are, respectively, the approximations for I< I < 1 to the solutions +,v 
and += of the full wave equation. The Sommerfeld solution +,y takes care 
of all the boundary conditions along the Mach circle, imposed by con- 
ditions of proper joining to the pulses outside the Mach circle, these joining 
conditions are naturally the same for the solution + (with vorticity) and for 
+s, so that the solution +1- = $- dS fulfills ' zero disturbance ' conditions 
along the Mach circle. Thus, the solution +r expresses the sole effect of 
the growing vortex region, and the vanishing of the solution on the Mach 
circle simply expresses the fact that this disturbance, originating at z = 0, 
t = O ,  can spread only with the velocity of sound. Evidently, as long as 
the incompressible approximation can be made, i.e. as long as zr< at, it 
makes no difference whether the ' no-flow ' condition is fulfilled on the 
Mach circle or at infinity. 

From the total potential 

the complex velocity wK ' at ' the singular point zr will be derived. This 
is defined, according to Kirchhoff, as the regular part of the complex velo- 
city at zy, 

The calculation of the limit, which requires some care, leads to the following 
result : 

wK= - 

If the vortex is free, it moves with the Kirchhoff velocity wg, that is 
dZp - 

w K =  dt =a[,. 

(Kote that the complex velocity is the conjugate of the physical velocity 
vector.) Equations (20) and (21) together give an important connection 
between r and cF. 

A further complication arises from the fact that this single vortex with 
rariable intensity is not free ; strictly speaking, it is incompatible with the 
vortex conservation laws. The original vortex spiral naturally is free, i.e. 
it does not sustain any forces. By concentration of the spiral into a single 
vortex, its ' umbilical chord ' has been cut, so that either the vortex strength 
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cannot grow, or, if I’ changes, an unbalanced pressure jump will be found 
on any line connecting the vertex of the wedge and the vortex. This pressure 
jump is expressed by the fact that &$/at has a multivalued (logarithmic) term 
for variable r;  the magnitude of the jump is p d r i d t  = constant. Due to the 
‘hydrostatic’ character of this jump pressure, the resultant force is the 
same on any line connecting the vertex and the vortex, and is equal to 
lzrlpI‘/t ; its direction is perpendicular to x,. 

It would seem that the single-vortex model has to be abandoned, due to 
its inconsistency with vortex-conservation laws. However, an ingenious 
proposal which enables this useful approximation to be retained has been 
made by Brown & Michael (1954) and by Edwards (1954): let the single 
vortex not be free, but subject to a Joukowski force, which cancels the un- 
balanced force on the vertex-vortex line. (Only an unbalanced moment 
will remain.) In order to present this condition in full generality, let the 
sheet be generated at a point zo, so that the (complex) force to be balanced 
is 

The Joukowski force is 

F , = - ~ ~  wz- - r. 
. (- d3 

so that the condition of the vanishing total force leads to 

dt  - 
It has been pointed out by Cheng (1955) that this equation may be used for 
any flows with vortex generation, even without similarity. In the general 
similar case expressed by (16),z,cc tm and rcc tzm-l, so that (24) yields 
(with zo=O) 

3m-1- 
w g =  - x,, 

or, for quasi-steady flow (m = l), 
- 

w K  = 2a<,, 
which replaces (21). It is seen that (21) and (26) differ only by a numerical 
factor 2;  the exact number to be taken is naturally unknown as long as the 
true spiral structure is undetermined, but (26) may be supposed to lead to 
a close estimate. The ‘ free-vortex ’ condition 

dZr m -  
d t  t zr’ (27) - = - 

leads to the same result as (25) for m =  $, when the single-vortex model 
becomes exact : rcc t2m-1 = constant. This interesting limiting case, which 
may be realized in special cases of incompressible flow, is certainly worthy 
.of further investigation. 
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Returning to our problem, the elimination of wK from (20) and (26) leads 
~~ 

t o  the following connection between cl- and r: 
r r -  1.1; -MoAl(;- q-+ 1 5:+& -}, 

4rra2t n {$- 5; 
~ .~ 

Putting tr = o exp (i8), the imaginary and real parts of (28) yield, respectively, 

(29) 
r 0 = Ma A, nun sin n6 - - 

47rna2t ' 

and L 
- u2 = Ma A, on cos n8 - 
n 

1 cot n8. 
47ra2t 

Elimination of r in (30) by (29) leads to the equation 
2 - o2=M0 A,on(l-n)cosn6, 
n 

and tan n6 
i - n  

r = 8ra2t - 0 2 .  

Equation (31) still contains the factor A,, which has to be taken from the 
development of the known Sommerfeld solution. (This is the only point 
where this function will be explicitly needed.) From the solution of 
Keller & Blenk (1951) and Miles (1952) it is found that 

22-n 
A,= ~ sin nn sin ntc, 

n( 1 - n) 
where u is the angle between the wedge bisectrix and the incident wave 
normal. With this value, (31) becomes 

n sin nrr sin ncc cos n6 Ma (33) 

Equation (33) expresses the relative distances of the vortex from the vertex 
as a function of the wedge angle (n), the incident wave direction (cc), the 
incident shock strength (Ma), and the direction of the vortex motion 6, 
measured from the (real axis) side of the wedge. The angle 6 still being 
unknown, (33) provides only a semi-empirical formula for u and, by (32), 
for I'. Equation (33) was tested by Howard & Matthews (1955), who 
found the calculated values consistently about lo?/, too low, for p=5". 
Similarly good results were obtained by Waldron (1954). 

It may be pointed out that even at this stage, with 6 still undetermined, 
it is easy to find upper bounds for quantities of interest. For instance, 
according to (32) and (33), 

which has a maximum at 
r cc sin n8(cos n8)nl(a-n), 

n sin%$= 1 - - 
2 '  

An upper bound for the circulation can be found with this value of 9. 
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4. THE KUTTA CONDITION 

The condition that the velocity remains finite at the sharp edge can be 
applied also to the single-vortex model ; it determines the direction 8 of the 
vortex motion, as there is only one 8 for which the velocity at the origin 
remains finite. It will be seen, however, that the most serious shortcomings 
of the single-vortex approximation present themselves in connection with 
the Kutta condition. The previous calculations herein have been pushed 
as far as possible without making use of this requirement. 

Near the origin, the potential (18) can be developed in the following 
power series : 

8 

90" 
56.6" 
30" 

The velocity remains finite for 5 = 0 if the coefficient of Cn vanishes, or, 
putting C, = u exp (i8) again, if 

Equations (29) and ( 3 5 )  immediately yield 
4nsin2n8=1. 

According to this equation, 8 depends on the wedge angle only. Typical 
values are: 

Howard 8t Matthews (1955) observed for /3 = 5" the value 8 = 68", while 
the theoretical angle according to (36) is 8 = 88". For larger wedge angles 
the disagreement becomes even worse. The experiments made at the 
University of Michigan with 90"-wedges (plate 1) show values of 8 of about 
32" (depending slightly on the angle of incidence) instead of 56.6". A 
critical examination of the Kutta condition for the single-vortex model is 
warranted; it will lead to an explanation of the growing difficulties for in- 
creasing wedge angle. 

For this purpose, it is even necessary to investigate the original problem 
of the vortex spiral. Let x , = ~ t [ ~  be the location of the vortex sheet, 
given as a function of a suitable parameter, such as the arc length h of the 
spiral (measured from the origin). Let r, be the circulation of the spiraI 
beyond the point 2,; the total circulation in the whole spiral, Ti,, will be 
designated from now on by To. The line density of vorticity is, with the 
present sign conventions, - dr,/dh. By superposition, the potential of the 
whole spiral flow may be expressed with the help of the potential (18) as 
'elementary solution' : 
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Plate 1. Shadowgram of a shock wave diffracted by a YO” wedge. M0-=0.27, 
Ahead of the shock, thc air is under atmospheric 

(Reproduced, by kind permission of Prof. 0. Laporte, from a 
t=152 microseconds. 
conditions. 
report prepared at the University of Michigan.) 
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The Kutta condition now can be expressed as follows : 

It is seen that (35)  approximates (38) in a rough way, as parts near the origin 
(a, - 0) can give a significant contribution to the integral in (38). 

Along the spiral, the tangential velocity is discontinuous while the 
normal velocity is continuous, that is, the real part of the potential (37) will 
have a jump while the imaginary part (the stream function) is the same on 
both sides. This behaviour is assured by setting up the solution in the 
form (37) (with real Pa). If the complex potentials on the two sides of the 
spiral are called +I and $ z ,  their difference at any point of the spiral is reaI 
and given by 

412 - 411 = ra. (39) 

Finally, the kinematic and dynamic conditions along the vortex sheet 
must be formulated. The condition is especially simple at the origin of 
the sheet, where the velocity normal to the spiral vanishes, and the complex 
velocities on the two sides of the sheet, w1 and w2, are parallel. In view of 
(39), equality of the pressure on both sides of the sheet can be expressed by 
the equation 

If the total circulation changes with time, it is obviously impossible to have 
both w1 = 0 and w2 = 0. ' 

Let the angles between the sheet and the adjacent side of the wedge at 
the origin be y1 and yz  on the two sides of the spiral ; y1 + y 2  = 2n - p. The 
flow velocity will be zero, finite or infinite at the origin according as the 
angle y is less than, equal to, or larger than n-, respectively. (It can be shown 
that the sheet will have infinite curvature at = 0 ; nevertheless, the simple 
statement above remains true.) It is now evident that one of the corners 
must form the angle r, and the other the angle T - 8. For, if both y1 and y2 
were less than n, both w1 and w2 would vanish, which is impossible for 
dr,,/dt#O. If one corner had an angle larger than n-, the velocity would be 
infinite, and the Kutta condition thereby violated. 

If /3> 0, the velocity is finite 
on one side, and zero on the other side, so that, in view of (40), 

Now, two cases have to be distinguished. 

w2 = 0, I w1 I = d 2 d r O / d t  (say). 

On the other hand, if /3 = 0 and y1 = y 2  = T ,  it is impossible to have w2 = 0 and 
still have a simple spiral flow. Vanishing velocity together with y z = n  is 
only possible if the potential behaves on one side as xn with n = 2 ,  3, . . . 
These stagnation points imply a profound change in flow configurations, 
making the simple spiral impossible. Therefore, (41) must hold for p> 0 
and cannot be true for /3 = 0. This is a first indication of an essential differ- 
ence between the spirals for Sero wedge angle and for'finite values of p. 
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This point can be elaborated further as follows. The flow potential of 
the spiral, as given in(37),can be written, with the help of the Kutta condition 
(38), in the form 

In  this expression the integrand represents the complex potential of a flow 
element in which the vortex flow is ' paired ' with a part of the 5" -flow in 
such a way that the Kutta condition is always fulfilled. The velocity at the 
origin will remain finite even if only a part of the integral in (42) is considered. 

Let the domain of integration in (42) be subdivided in two parts : a short 
length A of the spiral, beginning at the origin, and the remaining domain 
A-A. Differentiation of the latter integral will give the velocity of the 
sheet near 5=0 with no contribution from the local sheet element; this 
is regular and behaves as 5 g n - I .  For /? = 0, n = 4, this velocity is (in general) 
not zero ; in particular. it does not vanish for the spiral, as only elements 
with real cA have vanishing contributions, and the sign of the veloci+y 
depends on the sign of the imaginary part of ln, which is always the same 
for the spiral ; also, drl never changes its sign. On the other hand, if p> 0, 
the contribution from the integral over h - A to the velocity' near the origin 
always vanishes for 5 = 0, and the ' strength ' of the zero increases with /3. 

Now consider the part contributed by the integral ovGr 4, which will 
introduce the velocity jump across the sheet at [,=O. If p = O ,  this jump 
is superimposed upon an already existing mean velocity. (It can be shown 
that for n = 9 the contribution from h - A  tends towards the meanvelocity and 
the part from A gives the velocity difference in (40), for the limit A -+ 0.) 
In  contrast, for n> $, the contribution from the small length A not only has 
to produce the velocity difference but the mean velocity as well ; it has to 
change the character of the flow profoundly-from a velocity of the type 
12n-1 to a velocity behaving as ( 0  on one side and Q2n-1)/(1-n) on the other side 
of the sheet. I t  can be seriously doubted whether such a type of solution 
exists, i.e., whether a spiral solution of the form (42) can be found for n> 4. 
No such difficulties arise for p = O ,  and it can be shown that the required 
type of flow around the origin is possible for a sheet which is of the form 
r ln  = const.@, for in ( = +iql) -+ 0. (The reason is that a velocity 
field of the type c,,+c,[~/~+. . . can be derived from the integral over 
A - 4  and the spiral has to be a streamline of this field for 5, +O.) 

The somewhat academic question of the existence will not be discussed 
any further, and the results of the previous considerations can be summed 
up as follows. If p = O ,  the spiral induces at the origin a certain mean 
velocity which provides a speedy transport of newly created vorticity, 
stretching the sheet near the origin and reducing the density of the sheet 
such that its influence near the origin is weak. If /3 <O, on the other hand, 
the vortex elements nearest to the origin have to induce their own mean 
' transport ' velocity, which is physically possible only by a strong accumu- 
lation of vorticity near the edge, increasing in strength with the wedge angle. 
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Returning to the original question, it becomes clear why the fulfillment 
of the Kutta condition becomes a poor approximation for blunt wedges. 
Mathematically, the question is, how well does (35) approximate (38) ? 
The approximation is poor if a high vortex density near the origin exists 
and this must be the case for blunt wedges. 

The doubts about the existence of the idealized solution (42) for n > +  
suggest a re-examination of the phenomenon in real fluids. This will be 
based on the shadowgrams taken at the University of Michigan, where 
experiments were carried out with a pressure ratio of 1.44 of the incident 
shock. These pulses may be considered weak enough for the point of view 
adopted in this paper, namely, that the vortex generation problem is essen- 
tially an incompressible flow phenomenon. In contrast, experiments by 
Waldron (1954) with pressure ratios of 1-93 and above show supersonic flow 
near the origin combined with much more complicated vortex-generation 
patterns, which will not be discussed here. 

The shadowgram shown in plate 1 reveals a startling discrepancy 
between the classical theoretical assumption-that vorticity is generated at 
the sharp edge only-and the real fluid-behaviour. The shadowgram shows 
a second vortex, smaller, but very near the edge, rotating in a direction oppo- 
site to the sense of the main vortex. A quaiitative explanation of this 
' secondary vortex separation ' is easily found. The flow pattern of the 
primary vortex spiral, originating at the sharp edge, must have found along 
the side of the wedge near the vortex a deceleration, or diminishing velocity 
towards the vertex of the wedge. This is connected with a pressure rise, 
and therefore the boundary layer along the wall separates and forms the 
secondary vortex. Thus, secondary vortex separation is a ' viscous ' 
effect, and the basic assumption that the flow can be treated as inviscid also 
needs re-examination. 

A series of shadowgrams of the Same diffraction case as that in plate 1, 
taken at different times, show however that the flow pattern with secondary 
vortex separation is still essentially quasi-steady. Boundary-layer separ- 
ation patterns are influenced by the pressure distribution and by the Reynolds 
number. It is known that domains of Reynolds numbers exist in which 
the separation phenomenon is determined by the pressure distribution only. 
Jn such a domain, explicit use of the viscosity for the vortex generation 
problem is not needed, just as in the case of a sharp edge. (The dissipative 
effect of vorticity has been already neglected for the primary vortex separ- 
ation.) Thus the existence of quasi-steady flow patterns with secondary 
vortex separation is understandable, but it must be borne in mind that 
these patterns might be different in a different domain of Reynolds numbers. 
The pertinent Reynolds number can be taken as r , / v  (v=kinematic vis- 
cosity); using for I',, the estimate expressed by (32) and (31), this number 
becomes (omitting factors depending on flow geometry only) 

so that, given sufficient time (and size), all values of Re may be attained, 
with the time unit fixed hy the gas properties and the shock strength. 
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The first two factors represent a number of the order of the molecular colli- 
sion frequency in the gas, i.e. a number of the order of 1O1O sec-l for atmo- 
spheric air, so that for the case represented by plate 1, &=lo6. 

What are the consequences of the secondary vortex separation effect on 
the previous results ? If the flow pattern is very nearly quasi-steady, as is 
proved by experience at least for a limited Re-domain, the dimensional 
analysis of $ 2  remains valid fo? weak shocks. The numerical factors esti- 
mated in 3 3 become less accurate, but no change in the orders of magnitude 
can be expected. The application of the Kutta condition to the single- 
vortex model becomes obviously senseless, as the secondary vortex is very 
near to the edge and has an appreciable effect there. 

Secondary vortices become increasingly important with growing wedge 
angles. They are hardly detectable in the pictures taken by Howard & 
Matthews for /3= 5". A fine picture of the phenomenon for sharp wedges 
can be found in Prandtl's article in Hundbuch der Experimental-Physik (p. ZO), 
also reproduced in Goldstein's Modern Developments in Fluid Dynamics 
(p. 40). The small secondary vortex would be easily overlooked by an 
observer who is not determined to find it. 

Secondary vortices will also be strongly influenced by the motion of the 
wedge, as discussed in $2. Three cases are sketched in figure 1 for the 
case p=O; the arrow indicates the velocity v0 relative to the edge. The 
strongest secondary vortices will be found in case c. In this case, oo also 
reduces the ' mean ' velocity at the edge which transports newly created 
vorticity away from the edge. I t  may be conjectured that if an inviscid 
spiral solution for p=O exists mathematically, it can exist only beyond a 
certain limiting value of q,. 

(a 1 

v, = 0 vo 

Figure 1. Vortex separation with fluid motion parallel to a sharp edge. 

The case represented in figure l c  is the one of particular interest in the 
theory of delta wings. It is seen that the application of the Kutta con- 
dition makes no sense for a single-vortex model, frum which at most a semi- 
empirical result can be expected. 

Experiments by Michael (1955) on leading-edge separation from delta 
wings show the existence of secondary vortex separation, and even more 
complicated phenomena. For small aspect ratios, the ' primary ' vortex 
appears to be broken up into two regions, one very near the tip, and a main 
vortex, so that three distinct vortices can be found. If the aspect ratio is 
increased (which corresponds to an increase of t i o  in the diffraction case), 
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the vortices are broken up further, and numerous ‘ vortical regions ’ appear. 
In  these cases, agreement with the results calculated from the single-vortex 
approximation is poor. 

Finally, attention should be drawn to the uneven vortex densityat the 
beginning of the sheet in plate 1 ; other pictures also show ‘ wiggles ’ and 
‘ knots ’ along the spiral. A detailed investigation of the vortex generation 
in a viscous fluid might show that it is a truly unsteady (not quasi-steady) 
phenomenon-possibly periodic with a frequency connected with the 
stability properties of the sheet. Fortunately, this effect hardly influences 
the overall quasi-steady character of the flow, at least in the Reynolds 
number domains observed so far. 

5. THE STRUCTURE OF THE CORE OF THE SPIRAL VORTEX SHEET 

Experience indicates, and the theory presented by Howard & Matthews 
(1955) confirms, the important role of compressibility in the development 
of the core of the spiral. Nevertheless, a few remarks will be made on the 
spiral sheet in an incompressible fluid, as this question leads to a challenging 
mathematical problem of considerable theoretical interest. Previous 
treatments are due to Prandtl (1922), who gave the first formulation of the 
problem, together with some special solutions, and Kaden (1931), whose 
work represents the major basic contribution to our knowledge in this 
field. 

The formulation of the problem as given in $4 is not yet complete. 
‘The condition (40) to be fulfilled along the spiral holds in this form only 
around z,=O. For any point of the spiral, the following two conditions 
(‘ kinematic ’ and ‘ dynamic ’) have to be fulfilled : 

(i) the normal velocity of the spiral sheet 3, must equal the normal 

(ii) the pressure difference between the two sides of the sheet must vanish. 
When the pressure along the spiral is computed, the time derivative of 

the potential (space-fixed) must be expressed by the time derivative along 
the spiral, i.e., along a point moving in accordance with the kinematic con- 
dition (i). The two conditions are easily formulated, but there exists a 
way of writing down both conditions directly in complex form, by use of 
Kirchhoff’s law of the vortex motion, stating that every vortex element moves 
with a velocity equal to the regular part of the total velocity at the vortex 
point. The notions of this law have to be redefined for a continuous sheet. 

It is well known that the regular part of the velocity is represented, in 
case of a sheet along a s.mooth curve, by the mean value of the velocities on 
both sides. The complex ‘ regular part ’ of the velocity will be 

IN INCOMPRESSIBLE FLOW 

velocity of the fluid ; 

w, = $(Wl 4- Wz).  (44) 
The meaning of a ‘vortex point’ for a continuous sheet xA has to be 

defined as a point of the sheet for which rA = constant,*as an observer moving 
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with such a point will never be ‘passed’ by a vortex element. (The 
definition dr,jdX = constant is obviously wrong, as the vortex elements can be 
stretched in the course of the sheet motion.) Thus, Kirchhoff’s law, ex- 
pressed by (21) for a single vortex, can be written for a continuous sheet in 
the following form : 

I 

(45) 

giving in a nutshell both kinematic and dynamic conditions. 

similar) flows with time dependence expressed by (16). 
Equation (45) will be applied to ‘ generalized ’ quasi-steady (i.e., 

In  this case, 

or 

r a- -tzrn-lG($) 

so that (45) can be written as 

(47) 

The left-hand side has to be derived from the complex potential (42), putting 
d r ,  = t2v1-ldG, by finding the complex velocities on both sides of the spiral 
and taking the mean value. The computation of this quantity is naturally 
the difficult part of the problem, and (48) becomes a formidable non-linear 
singular integro-differential equation for as a function of G. 

Kaden’s results for the spiral core can be deduced and generalized by 
using a simple approximate expression for w, in (48), namely, 

where xi, (and 5,) is now measured from the centre of the spiral. (It may 
be noted that (48) remains the same for any choice of ‘ similar ’ point as the 
origin.) Equation (49) expresses the assumption that w, is the same as the 
selocity induced by a concentrated vortex of the strength Ti, (i.e., the cir- 
culation up to zA) situated. at the spiral centre. It is easily seen that this 
assumption is reasonably good if the change of r ,  per turn of the spiral is 
small compared with r,. 

Introduction of (49) into (48)’ by use of the variables defined in (46) and 
(47), leads to the equation 

iG - - 4, - =m<,<,-(2m-l)G5 - 
277 ’dG‘ 

For the solution, put 
5, = s( G) exp iO( G). 

Introduction of this expression into (50) leads, upon splitting into real and 
imaginary parts, to the following two equations : 

ms2 - (2m - 1)Gss‘ = 0, 
CT - (2m - l)s2O’ = - 
2T 
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After an easy integration, the final result is 

where B is a constant of integration. 
value and the argument of C2 is the following : 

The connection between the absolute 

s = B1-2m(27r0)-m. (52) 

For m = 1 ,  the equation of the spiral in incompressible flow would be, in 
Kaden’s approximation, s0 = constant, for 0 + co. 

Expressed by the radius s, it .is found that 

and on introducing a spiral arc length dh for the almost circular core by the 
approximate equation 

dh = sd0, (55) 

it can be shown with the help of (52) that 
dG 
dh 
- = 2 4 2 m  - 1)s. (56) 

The change of G per turn becomes proportional to s2, which for small values 
of s will always be less than G - s(2m-1)’m. 

The singular behaviour in the case of m = Q has been pointed out before : 
the ‘concentrated vortex’ solution is exact, and there is no spiral. The 
value m = i  of the exponent must represent a limiting case for possible 
‘ similar ’ flows of this type, as, for m c i ,  G becomes infinite at the centre 
s=O and decreases with s, i.e., vorticity flows back from the core to the 
generating edge ! 

It has been noted before that for = 0 the leading portion of the spiral 
can be handled ; now approximations for the central core in incompressible 
flow have been given. The remaining task of ‘joining ’ the two solutions, 
and ultimately of finding the potential for the whole flow field, will certainly 
not be easy. 
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